In this work, we propose an information-directed objective for infinite-horizon reinforcement learning (RL), called the occupancy information ratio (OIR), inspired by the information ratio objectives used in previous information-directed sampling schemes for multi-armed bandits and Markov decision processes as well as recent advances in general utility RL. The OIR, comprised of a ratio between the average cost of a policy and the entropy of its induced state occupancy measure, enjoys rich underlying structure and presents an objective to which scalable, model-free policy search methods naturally apply. Specifically, we show by leveraging connections between quasiconcave optimization and the linear programming theory for Markov decision processes that the OIR problem can be transformed and solved via concave programming methods when the underlying model is known. Since model knowledge is typically lacking in practice, we lay the foundations for model-free OIR policy search methods by establishing a corresponding policy gradient theorem. Building on this result, we subsequently derive REINFORCE- and actor-critic-style algorithms for solving the OIR problem in policy parameter space. Crucially, exploiting the powerful hidden quasiconcavity property implied by the concave programming transformation of the OIR problem, we establish finite-time convergence of the REINFORCE-style scheme to global optimality and asymptotic convergence of the actor-critic-style scheme to (near) global optimality under suitable conditions. Finally, we experimentally illustrate the utility of OIR-based methods over vanilla methods in sparse-reward settings, supporting the OIR as an alternative to existing RL objectives.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员