We study the bit complexity of inverting diagonally dominant matrices, which are associated with random walk quantities such as hitting times and escape probabilities. Such quantities can be exponentially small, even on undirected unit-weighted graphs. However, their nonnegativity suggests that they can be approximated entrywise, leading to a stronger notion of approximation than vector norm-based error. Under this notion of error, existing Laplacian solvers and fast matrix multiplication approaches have bit complexities of $mn^2$ and $n^{\omega+1}$, respectively, where $m$ is the number of nonzero entries in the matrix, $n$ is its size, and $\omega$ is the matrix multiplication exponent. We present algorithms that compute entrywise $\exp(\epsilon)$-approximate inverses of row diagonally dominant $L$-matrices (RDDL) in two settings: (1) when the matrix entries are given in floating-point representation; (2) when they are given in fixed-point representation. For floating-point inputs, we present a cubic-time algorithm and show that it has an optimal running time under the all-pairs shortest paths (APSP) conjecture. For fixed-point inputs, we present several algorithms for solving linear systems and inverting RDDL and SDDM matrices, all with high probability. Omitting logarithmic factors: (1) For SDDM matrices, we provide an algorithm for solving a linear system with entrywise approximation guarantees using $\tilde{O}(m\sqrt{n})$ bit operations, and another for computing an entrywise approximate inverse using $\tilde{O}(mn)$ bit operations. (2) For RDDL matrices, we present an algorithm for solving a linear system using $\tilde{O}(mn^{1+o(1)})$ bit operations, and two algorithms for computing an entrywise approximate inverse: one using $\tilde{O}(n^{\omega+0.5})$ bit operations, and the other using $\tilde{O}(mn^{1.5+o(1)})$ bit operations.
翻译:我们研究了对角占优矩阵求逆的比特复杂度,这类矩阵与随机游走量(如命中时间和逃逸概率)相关。即使在无向单位权重图上,这些量也可能呈指数级小。然而,它们的非负性表明可以进行逐元素逼近,这导致了一种比基于向量范数误差更强的逼近概念。在此误差概念下,现有的拉普拉斯求解器和快速矩阵乘法方法的比特复杂度分别为 $mn^2$ 和 $n^{\omega+1}$,其中 $m$ 是矩阵的非零元个数,$n$ 是其维度,$\omega$ 是矩阵乘法指数。我们提出了在两种设置下计算行对角占优 $L$-矩阵(RDDL)的逐元素 $\exp(\epsilon)$-近似逆的算法:(1)当矩阵元素以浮点数表示给出时;(2)当它们以定点数表示给出时。对于浮点数输入,我们提出了一个立方时间算法,并证明在全对最短路径(APSP)猜想下其运行时间是最优的。对于定点数输入,我们提出了几种用于求解线性系统以及求逆 RDDL 和 SDDM 矩阵的算法,均具有高概率成功性。忽略对数因子:(1)对于 SDDM 矩阵,我们提供了一个算法,使用 $\tilde{O}(m\sqrt{n})$ 比特运算求解具有逐元素逼近保证的线性系统,以及另一个使用 $\tilde{O}(mn)$ 比特运算计算逐元素近似逆的算法。(2)对于 RDDL 矩阵,我们提出了一个使用 $\tilde{O}(mn^{1+o(1)})$ 比特运算求解线性系统的算法,以及两个计算逐元素近似逆的算法:一个使用 $\tilde{O}(n^{\omega+0.5})$ 比特运算,另一个使用 $\tilde{O}(mn^{1.5+o(1)})$ 比特运算。