The sheer volume of financial statements makes it difficult for humans to access and analyze a business's financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset -- the first of its kind -- should therefore enable significant, new community research into complex application domains. The dataset and code are publicly available\url{https://github.com/czyssrs/FinQA}.
翻译:大量的财务报表使得人类难以获取和分析企业的财务。 强有力的数字推理同样也面临该领域的独特挑战。 在这项工作中,我们侧重于回答金融数据方面的深刻问题,目的是对大量财务文件进行分析自动化。 与一般领域的现有任务不同,金融领域包括复杂的数字推理和对各异表述的理解。 为了便利分析进展,我们提议一个新的大型数据集,即FinQA, 由金融专家编写,在财务报告上配有问题解答配对。我们还注意到黄金推理程序,以确保充分解释。我们进一步在数据集中引入基线并进行全面实验。结果显示,在获取金融知识方面和在复杂的多步骤数字推理方面,受预先训练的大型模型远远落后于专家。因此,我们的数据集 -- -- 其首个类型 -- -- 应能对复杂的应用领域进行重要的、新的社区研究。数据集和代码是公开提供的:https://github.com/czysrs/FinQA}。