Automatic extraction of product attributes from their textual descriptions is essential for online shopper experience. One inherent challenge of this task is the emerging nature of e-commerce products -- we see new types of products with their unique set of new attributes constantly. Most prior works on this matter mine new values for a set of known attributes but cannot handle new attributes that arose from constantly changing data. In this work, we study the attribute mining problem in an open-world setting to extract novel attributes and their values. Instead of providing comprehensive training data, the user only needs to provide a few examples for a few known attribute types as weak supervision. We propose a principled framework that first generates attribute value candidates and then groups them into clusters of attributes. The candidate generation step probes a pre-trained language model to extract phrases from product titles. Then, an attribute-aware fine-tuning method optimizes a multitask objective and shapes the language model representation to be attribute-discriminative. Finally, we discover new attributes and values through the self-ensemble of our framework, which handles the open-world challenge. We run extensive experiments on a large distantly annotated development set and a gold standard human-annotated test set that we collected. Our model significantly outperforms strong baselines and can generalize to unseen attributes and product types.


翻译:从文字描述中自动提取产品属性对于在线浏览经验至关重要。这项任务的一个固有挑战是电子商务产品的新兴性质 -- -- 我们不断看到新型产品及其独特的新属性。大多数以前关于该问题的工作都利用一组已知属性的新值,但无法处理不断变化的数据所产生的新属性。在这项工作中,我们在开放世界环境中研究采矿属性问题,以提取新的属性及其价值。用户只需为少数已知属性类型提供几个例子,即薄弱的监管。我们提出了一个原则性框架,首先生成属性值候选人,然后将其分组为属性组合。候选人生成步骤探索一个预先培训的语言模型,从产品标题中提取短语。然后,一个属性认知微调方法优化多任务目标,并塑造语言模型的表达方式,以提取新的属性和价值。最后,我们通过处理开放世界挑战的自构框架,发现新的属性和价值。我们对一个庞大的远方位发展模型进行了广泛的实验,并且我们收集了一个高清晰的、高清晰的模型,我们用来测试了我们所收集的、高清晰的金质标准模型。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
35+阅读 · 2021年8月2日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关VIP内容
专知会员服务
90+阅读 · 2021年6月29日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
41+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员