Survivors of childhood cancer need lifelong monitoring for side effects from radiotherapy. However, longitudinal data from routine monitoring is often infrequently and irregularly sampled, and subject to inaccuracies. Due to this, measurements are often studied in isolation, or simple relationships (e.g., linear) are used to impute missing timepoints. In this study, we investigated the potential role of Gaussian Processes (GP) modelling to make population-based and individual predictions, using insulin-like growth factor 1 (IGF-1) measurements as a test case. With training data of 23 patients with a median (range) of 4 (1-16) timepoints we identified a trend within the range of literature reported values. In addition, with 8 test cases, individual predictions were made with an average root mean squared error of 31.9 (10.1 - 62.3) ng/ml and 27.4 (0.02 - 66.1) ng/ml for two approaches. GP modelling may overcome limitations of routine longitudinal data and facilitate analysis of late effects of radiotherapy.
翻译:暂无翻译