Component-wise gradient boosting algorithms are popular for their intrinsic variable selection and implicit regularization, which can be especially beneficial for very flexible model classes. When estimating generalized additive models for location, scale and shape (GAMLSS) by means of a component-wise gradient boosting algorithm, an important part of the estimation procedure is to determine the relative complexity of the submodels corresponding to the different distribution parameters. Existing methods either suffer from a computationally expensive tuning procedure or can be biased by structural differences in the negative gradients' sizes, which, if encountered, lead to imbalances between the different submodels. Shrunk optimal step lengths have been suggested to replace the typical small fixed step lengths for a non-cyclical boosting algorithm limited to a Gaussian response variable in order to address this issue. In this article, we propose a new adaptive step length approach that accounts for the relative size of the fitted base-learners to ensure a natural balance between the different submodels. The new balanced boosting approach thus represents a computationally efficient and easily generalizable alternative to shrunk optimal step lengths. We implemented the balanced non-cyclical boosting algorithm for a Gaussian, a negative binomial as well as a Weibull distributed response variable and demonstrate the competitive performance of the new adaptive step length approach by means of a simulation study, in the analysis of count data modeling the number of doctor's visits as well as for survival data in an oncological trial.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月22日
Arxiv
0+阅读 · 2024年5月20日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员