Wildfires have significant impacts on global vegetation, wildlife, and humans. They destroy plant communities and wildlife habitats and contribute to increased emissions of carbon dioxide, nitrogen oxides, methane, and other pollutants. The prediction of wildfires relies on various independent variables combined with regression or machine learning methods. In this technical review, we describe the options for independent variables, data processing techniques, models, independent variables collinearity and importance estimation methods, and model performance evaluation metrics. First, we divide the independent variables into 4 aspects, including climate and meteorology conditions, socio-economical factors, terrain and hydrological features, and wildfire historical records. Second, preprocessing methods are described for different magnitudes, different spatial-temporal resolutions, and different formats of data. Third, the collinearity and importance evaluation methods of independent variables are also considered. Fourth, we discuss the application of statistical models, traditional machine learning models, and deep learning models in wildfire risk prediction. In this subsection, compared with other reviews, this manuscript particularly discusses the evaluation metrics and recent advancements in deep learning methods. Lastly, addressing the limitations of current research, this paper emphasizes the need for more effective deep learning time series forecasting algorithms, the utilization of three-dimensional data including ground and trunk fuel, extraction of more accurate historical fire point data, and improved model evaluation metrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
Arxiv
26+阅读 · 2024年2月9日
Arxiv
23+阅读 · 2023年3月8日
Arxiv
58+阅读 · 2021年5月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
24+阅读 · 2024年2月23日
Arxiv
26+阅读 · 2024年2月9日
Arxiv
23+阅读 · 2023年3月8日
Arxiv
58+阅读 · 2021年5月3日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员