Given a set of $n$ points in the plane, the Unit Disk Cover (UDC) problem asks to compute the minimum number of unit disks required to cover the points, along with a placement of the disks. The problem is NP-hard and several approximation algorithms have been designed over the last three decades. In this paper, we have engineered and experimentally compared practical performances of some of these algorithms on massive pointsets. The goal is to investigate which algorithms run fast and give good approximation in practice. We present a simple $7$-approximation algorithm for UDC that runs in $O(n)$ expected time and uses $O(s)$ extra space, where $s$ denotes the size of the generated cover. In our experiments, it turned out to be the speediest of all. We also present two heuristics to reduce the sizes of covers generated by it without slowing it down by much. To our knowledge, this is the first work that experimentally compares geometric covering algorithms. Experiments with them using massive pointsets (in the order of millions) throw light on their practical uses. We share the engineered algorithms via GitHub - https://github.com/ghoshanirban/UnitDiskCoverAlgorithms for broader uses and future research in the domain of geometric optimization.
翻译:鉴于飞机上有一套美元点数,单位磁盘封面(UDC)问题要求计算覆盖点所需的单位磁盘最低数量,同时放置磁盘。问题在于NP硬和过去三十年来设计了若干近似算法。在本文中,我们设计并实验性地比较了这些算法在大点上的实用性能。目标是调查哪些算法运行迅速,并在实践中提供良好的近似率。我们为UDC提出了一个简单的70美元比方算法,该算法以预期时间(n)美元运行,并使用额外的O美元空间,其中美元表示所产生封面的大小。在我们的实验中,它最终成为了最快速的。我们还提出了两个超自然理论,以降低这些算法在大点上产生的覆盖大小,而不会大大减缓。据我们所知,这是实验性地算法覆盖法的首项比较。我们用大点(按百万的顺序)对它们进行实验,并使用大点数点(按百万美元)使用额外的O美元空间,其中的美元表示所生成的封面大小。 在我们的实验中,我们分享了其实际地平地基/Sqialimalalalalusab_Gib_Hsalalalb/slogsmab/salb_