In this paper, local H\"older regularization is incorporated into a physics-informed neural networks (PINNs) framework for solving elliptic partial differential equations (PDEs). Motivated by the interior regularity properties of linear elliptic PDEs, a modified loss function is constructed by introducing local H\"older regularization term. To approximate this term effectively, a variable-distance discrete sampling strategy is developed. Error estimates are established to assess the generalization performance of the proposed method. Numerical experiments on a range of elliptic problems demonstrate notable improvements in both prediction accuracy and robustness compared to standard physics-informed neural networks.


翻译:本文提出将局部Hölder正则化融入物理信息神经网络(PINNs)框架,用于求解椭圆型偏微分方程(PDEs)。受线性椭圆型PDEs内部正则性性质的启发,通过引入局部Hölder正则化项构建了改进的损失函数。为有效近似该正则项,开发了一种变距离离散采样策略。通过建立误差估计来评估所提方法的泛化性能。在一系列椭圆型问题上的数值实验表明,与标准物理信息神经网络相比,该方法在预测精度和鲁棒性方面均有显著提升。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员