In this paper, local H\"older regularization is incorporated into a physics-informed neural networks (PINNs) framework for solving elliptic partial differential equations (PDEs). Motivated by the interior regularity properties of linear elliptic PDEs, a modified loss function is constructed by introducing local H\"older regularization term. To approximate this term effectively, a variable-distance discrete sampling strategy is developed. Error estimates are established to assess the generalization performance of the proposed method. Numerical experiments on a range of elliptic problems demonstrate notable improvements in both prediction accuracy and robustness compared to standard physics-informed neural networks.
翻译:本文提出将局部Hölder正则化融入物理信息神经网络(PINNs)框架,用于求解椭圆型偏微分方程(PDEs)。受线性椭圆型PDEs内部正则性性质的启发,通过引入局部Hölder正则化项构建了改进的损失函数。为有效近似该正则项,开发了一种变距离离散采样策略。通过建立误差估计来评估所提方法的泛化性能。在一系列椭圆型问题上的数值实验表明,与标准物理信息神经网络相比,该方法在预测精度和鲁棒性方面均有显著提升。