Recent work has revealed MOLE, the first practical attack to compromise GPU Trusted Execution Environments (TEEs), by injecting malicious firmware into the embedded Microcontroller Unit (MCU) of Arm Mali GPUs. By exploiting the absence of cryptographic verification during initialization, adversaries with kernel privileges can bypass memory protections, exfiltrate sensitive data at over 40 MB/s, and tamper with inference results, all with negligible runtime overhead. This attack surface affects commodity mobile SoCs and cloud accelerators, exposing a critical firmware-level trust gap in existing GPU TEE designs. To address this gap, this paper presents FAARM, a lightweight Firmware Attestation and Authentication framework that prevents MOLE-style firmware subversion. FAARM integrates digital signature verification at the EL3 secure monitor using vendor-signed firmware bundles and an on-device public key anchor. At boot, EL3 verifies firmware integrity and authenticity, enforces version checks, and locks the firmware region, eliminating both pre-verification and time-of-check-to-time-of-use (TOCTOU) attack vectors. We implement FAARM as a software-only prototype on a Mali GPU testbed, using a Google Colab-based emulation framework that models the firmware signing process, the EL1 to EL3 load path, and secure memory configuration. FAARM reliably detects and blocks malicious firmware injections, rejecting tampered images before use and denying overwrite attempts after attestation. Firmware verification incurs only 1.34 ms latency on average, demonstrating that strong security can be achieved with negligible overhead. FAARM thus closes a fundamental gap in shim-based GPU TEEs, providing a practical, deployable defense that raises the security baseline for both mobile and cloud GPU deployments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员