The discrete distribution of the length of longest increasing subsequences in random permutations of order $n$ is deeply related to random matrix theory. In a seminal work, Baik, Deift and Johansson provided an asymptotics in terms of the distribution of the largest level of the large matrix limit of GUE. As a numerical approximation, however, this asymptotics is inaccurate for small lengths and has a slow convergence rate, conjectured to be just of order $n^{-1/3}$. Here, we suggest a different type of approximation, based on Hayman's generalization of Stirling's formula. Such a formula gives already a couple of correct digits of the length distribution for $n$ as small as $20$ but allows numerical evaluations, with a uniform error of apparent order $n^{-3/4}$, for $n$ as large as $10^{12}$; thus closing the gap between tables of exact values (that have recently been compiled for $n$ up to $750$) and the random matrix limit. Being much more efficient and accurate than Monte-Carlo simulations for larger $n$, the Stirling-type formula allows for a precise numerical understanding of the first few finite size correction terms to the random matrix limit, a study that has recently been initiated by Forrester and Mays, who visualized the form of the first such term. We display also the second one, of order $n^{-2/3}$, and derive (heuristically) an expansion of the expected value of the length, exhibiting three more terms than previously known.


翻译:以随机变换方式随机增加最长的次序列长度的离散分布与随机基质理论密切相关。 在一项开创性工作中,Baik、Deift和Johansson提供了GUE大矩阵限制最大值最大值分布的零点数。然而,作为一个数字近似值,这种零点数对于小长度来说是不准确的,并且是一个缓慢的趋同率。在这里,根据Hayman对 Stirling 公式的概括化,我们建议了另一种近似值。在一项开创性工作中,Baik、Deift 和 Johansson就GUE最大矩阵限制的最大值分布提供了几张正确数字的零点数,但允许进行数字评价,但有一个统一的误差,其大到10 ⁇ -12美元;从而缩小了精确值表(最近我们为美元进行了汇编,最高达750美元)和随机矩阵限制之间的差。 第一次显示值比MHet-Carlo 3 公式第一次显示的准确数字数字数字数字数,最近通过精确的精确的5月1号模型的模拟,使得精确的直观的5月的直观值的直观值可以得出一个最接近值。

0
下载
关闭预览

相关内容

随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员