Robots often face manipulation tasks in environments where vision is inadequate due to clutter, occlusions, or poor lighting--for example, reaching a shutoff valve at the back of a sink cabinet or locating a light switch above a crowded shelf. In such settings, robots, much like humans, must rely on contact feedback to distinguish free from occupied space and navigate around obstacles. Many of these environments often exhibit strong structural priors--for instance, pipes often span across sink cabinets--that can be exploited to anticipate unseen structure and avoid unnecessary collisions. We present a theoretically complete and empirically efficient framework for manipulation in the blind that integrates contact feedback with structural priors to enable robust operation in unknown environments. The framework comprises three tightly coupled components: (i) a contact detection and localization module that utilizes joint torque sensing with a contact particle filter to detect and localize contacts, (ii) an occupancy estimation module that uses the history of contact observations to build a partial occupancy map of the workspace and extrapolate it into unexplored regions with learned predictors, and (iii) a planning module that accounts for the fact that contact localization estimates and occupancy predictions can be noisy, computing paths that avoid collisions and complete tasks efficiently without eliminating feasible solutions. We evaluate the system in simulation and in the real world on a UR10e manipulator across two domestic tasks--(i) manipulating a valve under a kitchen sink surrounded by pipes and (ii) retrieving a target object from a cluttered shelf. Results show that the framework reliably solves these tasks, achieving up to a 2x reduction in task completion time compared to baselines, with ablations confirming the contribution of each module.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员