We propose a new family of neural networks to predict the behaviors of physical systems by learning their underpinning constraints. A neural projection operator lies at the heart of our approach, composed of a lightweight network with an embedded recursive architecture that interactively enforces learned underpinning constraints and predicts the various governed behaviors of different physical systems. Our neural projection operator is motivated by the position-based dynamics model that has been used widely in game and visual effects industries to unify the various fast physics simulators. Our method can automatically and effectively uncover a broad range of constraints from observation point data, such as length, angle, bending, collision, boundary effects, and their arbitrary combinations, without any connectivity priors. We provide a multi-group point representation in conjunction with a configurable network connection mechanism to incorporate prior inputs for processing complex physical systems. We demonstrated the efficacy of our approach by learning a set of challenging physical systems all in a unified and simple fashion including: rigid bodies with complex geometries, ropes with varying length and bending, articulated soft and rigid bodies, and multi-object collisions with complex boundaries.


翻译:我们建议建立一个神经网络的新体系,通过学习物理系统的基本制约来预测物理系统的行为。神经投影操作员是我们方法的核心,它由轻量网络组成,具有嵌入的循环结构,以互动方式执行学习的基本制约,预测不同物理系统的各种受监管行为。我们的神经投影操作员的动机是,在游戏和视觉效应产业中广泛使用的基于位置的动态模型,以统一各种快速物理学模拟器。我们的方法可以自动和有效地发现从观察点数据(如长度、角度、弯曲、碰撞、边界影响及其任意组合)等一系列广泛的制约因素,而没有任何连接前科。我们提供了一个多组代表点,同时提供一个可配置的网络连接机制,以纳入处理复杂物理系统的先前投入。我们通过学习一套具有挑战性的物理系统,以统一和简单的方式,包括:具有复杂地形的僵硬体、长度和弯曲的绳索、清晰的软体和僵硬体形体,以及复杂的边界多点碰撞。我们展示了我们的方法的功效。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年7月27日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
专知会员服务
112+阅读 · 2019年12月24日
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Chance-Constrained Active Inference
Arxiv
0+阅读 · 2021年2月17日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
已删除
将门创投
14+阅读 · 2019年5月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员