Testing graph cluster structure has been a central object of study in property testing since the foundational work of Goldreich and Ron [STOC'96] on expansion testing, i.e. the problem of distinguishing between a single cluster (an expander) and a graph that is far from a single cluster. More generally, a $(k, \epsilon)$-clusterable graph $G$ is a graph whose vertex set admits a partition into $k$ induced expanders, each with outer conductance bounded by $\epsilon$. A recent line of work initiated by Czumaj, Peng and Sohler [STOC'15] has shown how to test whether a graph is close to $(k, \epsilon)$-clusterable, and to locally determine which cluster a given vertex belongs to with misclassification rate $\approx \epsilon$, but no sublinear time algorithms for learning the structure of inter-cluster connections are known. As a simple example, can one locally distinguish between the `cluster graph' forming a line and a clique? In this paper, we consider the problem of testing the hierarchical cluster structure of $(k, \epsilon)$-clusterable graphs in sublinear time. Our measure of hierarchical clusterability is the well-established Dasgupta cost, and our main result is an algorithm that approximates Dasgupta cost of a $(k, \epsilon)$-clusterable graph in sublinear time, using a small number of randomly chosen seed vertices for which cluster labels are known. Our main result is an $O(\sqrt{\log k})$ approximation to Dasgupta cost of $G$ in $\approx n^{1/2+O(\epsilon)}$ time using $\approx n^{1/3}$ seeds, effectively giving a sublinear time simulation of the algorithm of Charikar and Chatziafratis [SODA'17] on clusterable graphs. To the best of our knowledge, ours is the first result on approximating the hierarchical clustering properties of such graphs in sublinear time.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员