Complex networks are used as an abstraction for systems modeling in physics, biology, sociology, and other areas. We propose an algorithm based on a fast personalized node ranking and recent advancements in deep learning for learning supervised network embeddings as well as to classify network nodes directly. Learning from homogeneous, as well as heterogeneous networks, our algorithm outperforms strong baselines on nine node-classification benchmarks from the domains of molecular biology, finance, social media and language processing---one of the largest node classification collections to date. The results are comparable or better than current state-of-the-art in terms of speed as well as predictive accuracy. Embeddings, obtained by the proposed algorithm, are also a viable option for network visualization.

4
下载
关闭预览

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。

In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.

0
39
下载
预览

Graph representation learning is to learn universal node representations that preserve both node attributes and structural information. The derived node representations can be used to serve various downstream tasks, such as node classification and node clustering. When a graph is heterogeneous, the problem becomes more challenging than the homogeneous graph node learning problem. Inspired by the emerging information theoretic-based learning algorithm, in this paper we propose an unsupervised graph neural network Heterogeneous Deep Graph Infomax (HDGI) for heterogeneous graph representation learning. We use the meta-path structure to analyze the connections involving semantics in heterogeneous graphs and utilize graph convolution module and semantic-level attention mechanism to capture local representations. By maximizing local-global mutual information, HDGI effectively learns high-level node representations that can be utilized in downstream graph-related tasks. Experiment results show that HDGI remarkably outperforms state-of-the-art unsupervised graph representation learning methods on both classification and clustering tasks. By feeding the learned representations into a parametric model, such as logistic regression, we even achieve comparable performance in node classification tasks when comparing with state-of-the-art supervised end-to-end GNN models.

0
10
下载
预览

Recently, researches have explored the graph neural network (GNN) techniques on text classification, since GNN does well in handling complex structures and preserving global information. However, previous methods based on GNN are mainly faced with the practical problems of fixed corpus level graph structure which do not support online testing and high memory consumption. To tackle the problems, we propose a new GNN based model that builds graphs for each input text with global parameters sharing instead of a single graph for the whole corpus. This method removes the burden of dependence between an individual text and entire corpus which support online testing, but still preserve global information. Besides, we build graphs by much smaller windows in the text, which not only extract more local features but also significantly reduce the edge numbers as well as memory consumption. Experiments show that our model outperforms existing models on several text classification datasets even with consuming less memory.

0
7
下载
预览

Learning powerful data embeddings has become a center piece in machine learning, especially in natural language processing and computer vision domains. The crux of these embeddings is that they are pretrained on huge corpus of data in a unsupervised fashion, sometimes aided with transfer learning. However currently in the graph learning domain, embeddings learned through existing graph neural networks (GNNs) are task dependent and thus cannot be shared across different datasets. In this paper, we present a first powerful and theoretically guaranteed graph neural network that is designed to learn task-independent graph embeddings, thereafter referred to as deep universal graph embedding (DUGNN). Our DUGNN model incorporates a novel graph neural network (as a universal graph encoder) and leverages rich Graph Kernels (as a multi-task graph decoder) for both unsupervised learning and (task-specific) adaptive supervised learning. By learning task-independent graph embeddings across diverse datasets, DUGNN also reaps the benefits of transfer learning. Through extensive experiments and ablation studies, we show that the proposed DUGNN model consistently outperforms both the existing state-of-art GNN models and Graph Kernels by an increased accuracy of 3% - 8% on graph classification benchmark datasets.

0
4
下载
预览

The graph convolution network (GCN) is a widely-used facility to realize graph-based semi-supervised learning, which usually integrates node features and graph topologic information to build learning models. However, as for multi-label learning tasks, the supervision part of GCN simply minimizes the cross-entropy loss between the last layer outputs and the ground-truth label distribution, which tends to lose some useful information such as label correlations, so that prevents from obtaining high performance. In this paper, we pro-pose a novel GCN-based semi-supervised learning approach for multi-label classification, namely ML-GCN. ML-GCN first uses a GCN to embed the node features and graph topologic information. Then, it randomly generates a label matrix, where each row (i.e., label vector) represents a kind of labels. The dimension of the label vector is the same as that of the node vector before the last convolution operation of GCN. That is, all labels and nodes are embedded in a uniform vector space. Finally, during the ML-GCN model training, label vectors and node vectors are concatenated to serve as the inputs of the relaxed skip-gram model to detect the node-label correlation as well as the label-label correlation. Experimental results on several graph classification datasets show that the proposed ML-GCN outperforms four state-of-the-art methods.

0
4
下载
预览

The unsupervised text clustering is one of the major tasks in natural language processing (NLP) and remains a difficult and complex problem. Conventional \mbox{methods} generally treat this task using separated steps, including text representation learning and clustering the representations. As an improvement, neural methods have also been introduced for continuous representation learning to address the sparsity problem. However, the multi-step process still deviates from the unified optimization target. Especially the second step of cluster is generally performed with conventional methods such as k-Means. We propose a pure neural framework for text clustering in an end-to-end manner. It jointly learns the text representation and the clustering model. Our model works well when the context can be obtained, which is nearly always the case in the field of NLP. We have our method \mbox{evaluated} on two widely used benchmarks: IMDB movie reviews for sentiment classification and $20$-Newsgroup for topic categorization. Despite its simplicity, experiments show the model outperforms previous clustering methods by a large margin. Furthermore, the model is also verified on English wiki dataset as a large corpus.

0
6
下载
预览

Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets.

0
3
下载
预览

Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (e.g., convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

0
12
下载
预览

Methods that learn representations of nodes in a graph play a critical role in network analysis since they enable many downstream learning tasks. We propose Graph2Gauss - an approach that can efficiently learn versatile node embeddings on large scale (attributed) graphs that show strong performance on tasks such as link prediction and node classification. Unlike most approaches that represent nodes as point vectors in a low-dimensional continuous space, we embed each node as a Gaussian distribution, allowing us to capture uncertainty about the representation. Furthermore, we propose an unsupervised method that handles inductive learning scenarios and is applicable to different types of graphs: plain/attributed, directed/undirected. By leveraging both the network structure and the associated node attributes, we are able to generalize to unseen nodes without additional training. To learn the embeddings we adopt a personalized ranking formulation w.r.t. the node distances that exploits the natural ordering of the nodes imposed by the network structure. Experiments on real world networks demonstrate the high performance of our approach, outperforming state-of-the-art network embedding methods on several different tasks. Additionally, we demonstrate the benefits of modeling uncertainty - by analyzing it we can estimate neighborhood diversity and detect the intrinsic latent dimensionality of a graph.

0
5
下载
预览

We present DeepWalk, a novel approach for learning latent representations of vertices in a network. These latent representations encode social relations in a continuous vector space, which is easily exploited by statistical models. DeepWalk generalizes recent advancements in language modeling and unsupervised feature learning (or deep learning) from sequences of words to graphs. DeepWalk uses local information obtained from truncated random walks to learn latent representations by treating walks as the equivalent of sentences. We demonstrate DeepWalk's latent representations on several multi-label network classification tasks for social networks such as BlogCatalog, Flickr, and YouTube. Our results show that DeepWalk outperforms challenging baselines which are allowed a global view of the network, especially in the presence of missing information. DeepWalk's representations can provide $F_1$ scores up to 10% higher than competing methods when labeled data is sparse. In some experiments, DeepWalk's representations are able to outperform all baseline methods while using 60% less training data. DeepWalk is also scalable. It is an online learning algorithm which builds useful incremental results, and is trivially parallelizable. These qualities make it suitable for a broad class of real world applications such as network classification, and anomaly detection.

0
7
下载
预览
小贴士
相关论文
Ankit Pal,Muru Selvakumar,Malaikannan Sankarasubbu
39+阅读 · 2020年3月22日
Heterogeneous Deep Graph Infomax
Yuxiang Ren,Bo Liu,Chao Huang,Peng Dai,Liefeng Bo,Jiawei Zhang
10+阅读 · 2019年11月19日
Text Level Graph Neural Network for Text Classification
Lianzhe Huang,Dehong Ma,Sujian Li,Xiaodong Zhang,Houfeng WANG
7+阅读 · 2019年10月6日
Saurabh Verma,Zhi-Li Zhang
4+阅读 · 2019年9月25日
Semi-Supervised Graph Embedding for Multi-Label Graph Node Classification
Kaisheng Gao,Jing Zhang,Cangqi Zhou
4+阅读 · 2019年7月12日
An end-to-end Neural Network Framework for Text Clustering
Jie Zhou,Xingyi Cheng,Jinchao Zhang
6+阅读 · 2019年3月22日
Generative Graph Convolutional Network for Growing Graphs
Da Xu,Chuanwei Ruan,Kamiya Motwani,Evren Korpeoglu,Sushant Kumar,Kannan Achan
3+阅读 · 2019年3月6日
Liang Yao,Chengsheng Mao,Yuan Luo
12+阅读 · 2018年9月15日
Aleksandar Bojchevski,Stephan Günnemann
5+阅读 · 2018年2月27日
Bryan Perozzi,Rami Al-Rfou,Steven Skiena
7+阅读 · 2014年6月27日
相关VIP内容
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
图神经网络(GNN)必读论文及最新进展跟踪
深度学习与NLP
23+阅读 · 2019年6月7日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
21+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
9+阅读 · 2017年9月24日
Top