Generative artificial intelligence (AI), exemplified by the release of GPT-3.5 in 2022, has significantly advanced the potential applications of large language models (LLMs), including in the realms of ontology development and knowledge graph creation. Ontologies, which are structured frameworks for organizing information, and knowledge graphs, which combine ontologies with actual data, are essential for enabling interoperability and automated reasoning. However, current research has largely overlooked the generation of ontologies extending from established upper-level frameworks like the Basic Formal Ontology (BFO), risking the creation of non-integrable ontology silos. This study explores the extent to which LLMs, particularly GPT-4, can support ontologists trained in BFO. Through iterative development of a specialized GPT model named "My Ontologist," we aimed to generate BFO-conformant ontologies. Initial versions faced challenges in maintaining definition conventions and leveraging foundational texts effectively. My Ontologist 3.0 showed promise by adhering to structured rules and modular ontology suites, yet the release of GPT-4o disrupted this progress by altering the model's behavior. Our findings underscore the importance of aligning LLM-generated ontologies with top-level standards and highlight the complexities of integrating evolving AI capabilities in ontology engineering.
翻译:以2022年发布的GPT-3.5为代表的生成式人工智能(AI)显著推进了大语言模型(LLMs)的潜在应用,包括在本体开发和知识图谱构建领域。本体作为组织信息的结构化框架,以及将本体与实际数据相结合的知识图谱,对于实现互操作性和自动化推理至关重要。然而,当前研究大多忽视了从已确立的上层框架(如基础形式化本体BFO)扩展生成本体的工作,这可能导致创建无法集成的本体孤岛。本研究探讨了LLMs(特别是GPT-4)能在多大程度上支持接受过BFO训练的本体论学者。通过迭代开发名为“我的本体论专家”的专用GPT模型,我们旨在生成符合BFO规范的本体。初始版本在保持定义惯例和有效利用基础文本方面面临挑战。我的本体论专家3.0版本通过遵循结构化规则和模块化本体套件展现出潜力,但GPT-4o的发布改变了模型行为,打断了这一进展。我们的研究结果强调了将LLM生成的本体与顶层标准对齐的重要性,并揭示了在本体工程中整合不断演进AI能力的复杂性。