Searching by image is popular yet still challenging due to the extensive interference arose from i) data variations (e.g., background, pose, visual angle, brightness) of real-world captured images and ii) similar images in the query dataset. This paper studies a practically meaningful problem of beauty product retrieval (BPR) by neural networks. We broadly extract different types of image features, and raise an intriguing question that whether these features are beneficial to i) suppress data variations of real-world captured images, and ii) distinguish one image from others which look very similar but are intrinsically different beauty products in the dataset, therefore leading to an enhanced capability of BPR. To answer it, we present a novel variable-attention neural network to understand the combination of multiple features (termed VM-Net) of beauty product images. Considering that there are few publicly released training datasets for BPR, we establish a new dataset with more than one million images classified into more than 20K categories to improve both the generalization and anti-interference abilities of VM-Net and other methods. We verify the performance of VM-Net and its competitors on the benchmark dataset Perfect-500K, where VM-Net shows clear improvements over the competitors in terms of MAP@7. The source code and dataset will be released upon publication.


翻译:搜索图像在实际应用中受到广泛关注,但由于现实世界拍摄图像的数据差异(例如背景、姿势、视角、亮度)和查询数据集中相似图像的干扰,仍具有挑战性。本文研究了利用神经网络进行美容产品检索(BPR)的实际意义问题。我们广泛提取了不同类型的图像特征,并提出了一个有趣的问题,即这些特征是否有益于 i)抑制现实世界拍摄图像的数据差异,和 ii)区分外观非常相似但是本质上是不同美容产品的图像集,从而提高 BPR 的能力。为了回答这个问题,我们提出了一种新型的可变注意力神经网络来理解美容产品图像的多个特征的组合(称为 VM-Net)。考虑到 BPR 的公共发布的训练数据集很少,我们建立了一个新数据集,其中有超过一百万张图像被分类到 20K 个类别中,以改善 VM-Net 和其他方法的泛化和抗干扰能力。我们在基准数据集 Perfect-500K 上验证了 VM-Net 及其竞争对手的性能,其中 VM-Net 在 MAP@7 方面对竞争对手显示出明显的改进。代码和数据集将在发表后发布。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
30+阅读 · 2022年2月15日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员