A statistical system is classically defined on a set of microstates $E$ by a global energy function $H : E \to \mathbb{R}$, yielding Gibbs probability measures (softmins) $\rho^\beta(H)$ for every inverse temperature $\beta = T^{-1}$. Gibbs states are simultaneously characterized by free energy principles and the max-entropy principle, with dual constraints on inverse temperature $\beta$ and mean energy ${\cal U}(\beta) = \mathbb{E}_{\rho^\beta}[H]$ respectively. The Legendre transform relates these diverse variational principles which are unfortunately not tractable in high dimension. The global energy is generally given as a sum $H(x) = \sum_{\rm a \subset \Omega} h_{\rm a}(x_{|\rm a})$ of local short-range interactions $h_{\rm a} : E_{\rm a} \to \mathbb{R}$ indexed by bounded subregions ${\rm a} \subset \Omega$, and this local structure can be used to design good approximation schemes on thermodynamic functionals. We show that the generalized belief propagation (GBP) algorithm solves a collection of local variational principles, by converging to critical points of Bethe-Kikuchi approximations of the free energy $F(\beta)$, the Shannon entropy $S(\cal U)$, and the variational free energy ${\cal F}(\beta) = {\cal U} - \beta^{-1} S(\cal U)$, extending an initial correspondence by Yedidia et al. This local form of Legendre duality yields a possible degenerate relationship between mean energy ${\cal U}$ and $\beta$.
翻译:一个统计系统由全球能源函数($H):E\to\\mathb{R}$(美元)对一组微型美元(美元)进行典型定义,每个逆温($\beta=T ⁇ -1}$(H)美元)都会产生Gib概率度量(软度)$(美元)\rho ⁇ beta(H)$(美元)。Gibs States的特征是自由能源原则和最高峰值原则,对逆温(美元)和平均能量(美元)美元(美元) (美元)=(美元)=美元(美元) 美元(美元)=(美元)=(美元)=(美元)=(美元)=(美元)x(美元)=(美元) 美元(美元)=(美元)(美元)