A statistical system is classically defined on a set of microstates $E$ by a global energy function $H : E \to \mathbb{R}$, yielding Gibbs probability measures (softmins) $\rho^\beta(H)$ for every inverse temperature $\beta = T^{-1}$. Gibbs states are simultaneously characterized by free energy principles and the max-entropy principle, with dual constraints on inverse temperature $\beta$ and mean energy ${\cal U}(\beta) = \mathbb{E}_{\rho^\beta}[H]$ respectively. The Legendre transform relates these diverse variational principles which are unfortunately not tractable in high dimension. The global energy is generally given as a sum $H(x) = \sum_{\rm a \subset \Omega} h_{\rm a}(x_{|\rm a})$ of local short-range interactions $h_{\rm a} : E_{\rm a} \to \mathbb{R}$ indexed by bounded subregions ${\rm a} \subset \Omega$, and this local structure can be used to design good approximation schemes on thermodynamic functionals. We show that the generalized belief propagation (GBP) algorithm solves a collection of local variational principles, by converging to critical points of Bethe-Kikuchi approximations of the free energy $F(\beta)$, the Shannon entropy $S(\cal U)$, and the variational free energy ${\cal F}(\beta) = {\cal U} - \beta^{-1} S(\cal U)$, extending an initial correspondence by Yedidia et al. This local form of Legendre duality yields a possible degenerate relationship between mean energy ${\cal U}$ and $\beta$.


翻译:一个统计系统由全球能源函数($H):E\to\\mathb{R}$(美元)对一组微型美元(美元)进行典型定义,每个逆温($\beta=T ⁇ -1}$(H)美元)都会产生Gib概率度量(软度)$(美元)\rho ⁇ beta(H)$(美元)。Gibs States的特征是自由能源原则和最高峰值原则,对逆温(美元)和平均能量(美元)美元(美元) (美元)=(美元)=美元(美元) 美元(美元)=(美元)=(美元)=(美元)=(美元)=(美元)x(美元)=(美元) 美元(美元)=(美元)(美元)

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
53+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月23日
Arxiv
0+阅读 · 2022年8月19日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员