Quantum machine learning (QML) is the use of quantum computing for the computation of machine learning algorithms. With the prevalence and importance of classical data, a hybrid quantum-classical approach to QML is called for. Parameterized Quantum Circuits (PQCs), and particularly Quantum Kernel PQCs, are generally used in the hybrid approach to QML. In this paper we discuss some important aspects of PQCs with quantum kernels including PQCs, quantum kernels, quantum kernels with quantum advantage, and the trainability of quantum kernels. We conclude that quantum kernels with hybrid kernel methods, a.k.a. quantum kernel methods, offer distinct advantages as a hybrid approach to QML. Not only do they apply to Noisy Intermediate-Scale Quantum (NISQ) devices, but they also can be used to solve all types of machine learning problems including regression, classification, clustering, and dimension reduction. Furthermore, beyond quantum utility, quantum advantage can be attained if the quantum kernels, i.e., the quantum feature encodings, are classically intractable.


翻译:量子机器学习(QML)是用于计算机器学习算法的量子计算(QML)。由于古典数据的普遍性和重要性,需要对QML采用混合量子古典方法。参数化量子电路(PQCs),特别是量子内核 PQCs,通常用于QML的混合方法中。我们讨论量子内核的一些重要方面,包括PQCs、量子内核、具有量子优势的量子内核和量子内核的可训练性。我们的结论是,使用混合内核法(a.k.a.量子内核方法)的量子内核提供了独特的优势,作为QML的混合方法。它们不仅适用于Noisy中间级Quntum(NISQ)装置,而且还可用于解决所有类型的机器学习问题,包括回归、分类、聚合和尺寸减少。此外,如果量子效用超出量子效用,如果量子内核是质质级、质质质质变等,则可以实现量子优势。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月17日
Arxiv
29+阅读 · 2022年9月10日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
18+阅读 · 2019年1月16日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员