Compared to 2D lanes, real 3D lane data is difficult to collect accurately. In this paper, we propose a novel method for training 3D lanes with only 2D lane labels, called weakly supervised 3D lane detection WS-3D-Lane. By assumptions of constant lane width and equal height on adjacent lanes, we indirectly supervise 3D lane heights in the training. To overcome the problem of the dynamic change of the camera pitch during data collection, a camera pitch self-calibration method is proposed. In anchor representation, we propose a double-layer anchor with a improved non-maximum suppression (NMS) method, which enables the anchor-based method to predict two lane lines that are close. Experiments are conducted on the base of 3D-LaneNet under two supervision methods. Under weakly supervised setting, our WS-3D-Lane outperforms previous 3D-LaneNet: F-score rises to 92.3% on Apollo 3D synthetic dataset, and F1 rises to 74.5% on ONCE-3DLanes. Meanwhile, WS-3D-Lane in purely supervised setting makes more increments and outperforms state-of-the-art. To the best of our knowledge, WS-3D-Lane is the first try of 3D lane detection under weakly supervised setting.
翻译:与 2D 航道相比, 真实的 3D 航道数据很难准确收集 。 在本文中, 我们提出一种新的方法, 用于培训 3D 航道, 只有 2D 航道标签, 叫做 WS-3D- Lane 。 根据对 3D 航道宽度和相邻航道等高的假设, 我们间接监督培训中的 3D 航道高度 。 为了克服数据收集过程中相机阵列动态变化的问题, 提议了一个相机阵列自我校正方法 。 在锚控代表中, 我们提出一个双层锚, 改进了非最大抑制( NMS ) 方法, 使基于 锚的 方法能够预测两条近的行道 。 实验是在 3D- Lane 的基底线上进行, 以两种监督方法进行 。 在监管薄弱的环境下, 我们的 WS-3D- Lane 航道比前 3D- Lane 网 : 在 Aspo 3D 合成数据集中, F- 核心升至 92.923%, F1 升至 ON-3D 3D- D 级的测程中, 最受监管的测程 。 在监管的测程中, 最 最 进行 3D- L 的测算 。