To detect bias in face recognition networks, it can be useful to probe a network under test using samples in which only specific attributes vary in some controlled way. However, capturing a sufficiently large dataset with specific control over the attributes of interest is difficult. In this work, we describe a simulator that applies specific head pose and facial expression adjustments to images of previously unseen people. The simulator first fits a 3D morphable model to a provided image, applies the desired head pose and facial expression controls, then renders the model into an image. Next, a conditional Generative Adversarial Network (GAN) conditioned on the original image and the rendered morphable model is used to produce the image of the original person with the new facial expression and head pose. We call this conditional GAN -- MorphNet. Images generated using MorphNet conserve the identity of the person in the original image, and the provided control over head pose and facial expression allows test sets to be created to identify robustness issues of a facial recognition deep network with respect to pose and expression. Images generated by MorphNet can also serve as data augmentation when training data are scarce. We show that by augmenting small datasets of faces with new poses and expressions improves the recognition performance by up to 9% depending on the augmentation and data scarcity.


翻译:为了检测面部识别网络中的偏差,可以使用样本对网络进行检测,其中只有特定属性在某些受控方式上存在差异。 然而, 捕捉足够大的数据集, 并具体控制相关属性是困难的。 在此工作中, 我们描述一个模拟器, 将特定的头部姿势和面部表达功能调整应用到先前看不见的人的图像中。 模拟器首先将3D可变型模型适用于所提供的图像, 应用所需的头部姿势和面部表达功能控制, 然后将该模型转换成图像。 其次, 以原始图像和变形模型为条件的有条件的 GAN 自动网络( GAN ) 用于生成原始图像和变形模型, 用新的面部表达式和头部姿势生成原始人的图像。 我们称之为这个有条件的 GAN - MorphNet 。 使用MorphNet 生成的图像保存原始图像中的人的身份, 对头部脸部和面部表达式进行控制后, 可以创建测试组, 以识别面部识别深度网络的坚固性问题。 当培训数据缺乏时, MorphNet 生成的图像也可以作为数据增强数据, 。 我们通过增强数据表达方式通过增强数据, 增强数据, 增强数据, 增强数据以增强数据表达面部的功能, 增强数据增强数据增强数据。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
997篇-历史最全生成对抗网络(GAN)论文串烧
深度学习与NLP
16+阅读 · 2018年6月26日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员