We describe a recurrent neural network (RNN) based architecture to learn the flow function of a causal, time-invariant and continuous-time control system from trajectory data. By restricting the class of control inputs to piecewise constant functions, we show that learning the flow function is equivalent to learning the input-to-state map of a discrete-time dynamical system. This motivates the use of an RNN together with encoder and decoder networks which map the state of the system to the hidden state of the RNN and back. We show that the proposed architecture is able to approximate the flow function by exploiting the system's causality and time-invariance. The output of the learned flow function model can be queried at any time instant. We experimentally validate the proposed method using models of the Van der Pol and FitzHugh Nagumo oscillators. In both cases, the results demonstrate that the architecture is able to closely reproduce the trajectories of these two systems. For the Van der Pol oscillator, we further show that the trained model generalises to the system's response with a prolonged prediction time horizon as well as control inputs outside the training distribution. For the FitzHugh-Nagumo oscillator, we show that the model accurately captures the input-dependent phenomena of excitability.


翻译:我们描述了一种递归神经网络(RNN)架构,用于从轨迹数据中学习因果、时不变和连续时间控制系统的流函数。通过将控制输入的类限制为分段常数函数,我们展示了学习流函数相当于学习离散时间动态系统的输入-状态映射。这激发了使用RNN以及编码器和解码器网络的动机,它们将系统状态映射到RNN的隐藏状态中并返回。我们展示了所提出的架构能够通过利用系统的因果关系和时不变性来逼近流函数。学习到的流函数模型的输出可在任何时刻进行查询。我们使用Van der Pol和FitzHugh Nagumo振荡器的模型进行实验验证了所提出的方法。在这两种情况下,结果表明该体系结构能够紧密地重现这两个系统的轨迹。对于Van der Pol振荡器,我们进一步展示了经过训练的模型可以推广到预测时间范围较长的系统响应以及训练分布之外的控制输入。对于FitzHugh-Nagumo振荡器,我们展示了该模型准确地捕获了与输入相关的兴奋现象。

0
下载
关闭预览

相关内容

机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
81+阅读 · 2022年3月19日
【图神经网络实用介绍】A practical introduction to GNNs - Part 1
专知会员服务
50+阅读 · 2020年12月14日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月27日
Arxiv
21+阅读 · 2022年2月24日
Do RNN and LSTM have Long Memory?
Arxiv
19+阅读 · 2020年6月10日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
81+阅读 · 2022年3月19日
【图神经网络实用介绍】A practical introduction to GNNs - Part 1
专知会员服务
50+阅读 · 2020年12月14日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员