While data-driven methods offer significant promise for modeling complex materials, they often face challenges in generalizing across diverse physical scenarios and maintaining physical consistency. To address these limitations, we propose a generalizable framework called Physics-Embedded Conditional Neural Constitutive Laws for Elastoplastic Materials, which combines the partial differential equations with neural networks. Specifically, the model employs two separate neural networks to model elastic and plastic constitutive laws. Simultaneously, the model incorporates physical parameters as conditional inputs and is trained on comprehensive datasets encompassing multiple scenarios with varying physical parameters, thereby enabling generalization across different properties without requiring retraining for each individual case. Furthermore, the differentiable architecture of our model, combined with its explicit parameter inputs, enables the inverse estimation of physical parameters from observed motion sequences. This capability extends our framework to objects with unknown or unmeasured properties. Experimental results demonstrate state-of-the-art performance in motion reconstruction, robust long-term prediction, geometry generalization, and precise parameters estimation for elastoplastic materials, highlighting its versatility as a unified simulator and inverse analysis tool.
翻译:尽管数据驱动方法在建模复杂材料方面展现出巨大潜力,但其在泛化至多样化物理场景及保持物理一致性方面常面临挑战。为应对这些局限,我们提出了一种可泛化的框架——面向弹塑性材料的物理嵌入条件神经本构模型,该框架将偏微分方程与神经网络相结合。具体而言,模型采用两个独立的神经网络分别建模弹性与塑性本构关系。同时,模型将物理参数作为条件输入,并在涵盖多种物理参数场景的综合数据集上进行训练,从而无需针对每个具体案例重新训练即可实现跨不同材料属性的泛化。此外,模型的可微分架构结合显式参数输入,使其能够从观测到的运动序列中逆向估计物理参数。这一能力将我们的框架拓展至属性未知或未测量的物体。实验结果表明,该模型在弹塑性材料的运动重建、鲁棒性长期预测、几何泛化及精确参数估计方面均达到最先进性能,凸显其作为统一仿真器与逆向分析工具的多功能性。