Graph contrastive learning (GCL) emerges as the most representative approach for graph representation learning, which leverages the principle of maximizing mutual information (InfoMax) to learn node representations applied in downstream tasks. To explore better generalization from GCL to downstream tasks, previous methods heuristically define data augmentation or pretext tasks. However, the generalization ability of GCL and its theoretical principle are still less reported. In this paper, we first propose a metric named GCL-GE for GCL generalization ability. Considering the intractability of the metric due to the agnostic downstream task, we theoretically prove a mutual information upper bound for it from an information-theoretic perspective. Guided by the bound, we design a GCL framework named InfoAdv with enhanced generalization ability, which jointly optimizes the generalization metric and InfoMax to strike the right balance between pretext task fitting and the generalization ability on downstream tasks. We empirically validate our theoretical findings on a number of representative benchmarks, and experimental results demonstrate that our model achieves state-of-the-art performance.


翻译:图表对比式学习(GCL)是最有代表性的图形代表学习方法,它利用了尽量扩大相互信息(InfoMax)的原则来学习下游任务中应用的节点表示。为了更好地探讨从GCL到下游任务的概括化,以往的方法是超自然的界定数据扩增或托辞任务。然而,GCL的概括化能力及其理论原则的报告仍然较少。在本文件中,我们首先为GCL的概括化能力提出了一个称为GCL-GE的衡量指标。考虑到由于不可知的下游任务,衡量指标的可忽略性,我们理论上证明,从信息理论角度看,衡量指标是相互的上限。我们受约束地设计了一个名为InfoAdv的GCL框架,以强化的概括化能力为基础,共同优化通用指标和InfoMax的正确平衡了托辞任务与下游任务的一般化能力。我们从经验上验证了我们关于若干具有代表性的基准的理论结论,实验结果表明,我们的模型达到了最先进的业绩。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员