Finding schedules for pairwise meetings between the members of a complex social group without creating interpersonal conflict is challenging, especially when different relationships have different needs. We formally define and study the underlying optimisation problem: Polyamorous Scheduling. In Polyamorous Scheduling, we are given an edge-weighted graph and try to find a periodic schedule of matchings in this graph such that the maximal weighted waiting time between consecutive occurrences of the same edge is minimised. We show that the problem is NP-hard and that there is no efficient approximation algorithm with a better ratio than 13/12 unless P = NP. On the positive side, we obtain an $O(\log n)$-approximation algorithm. We also define a generalisation of density from the Pinwheel Scheduling Problem, "poly density", and ask whether there exists a poly density threshold similar to the 5/6-density threshold for Pinwheel Scheduling [Kawamura, STOC 2024]. Polyamorous Scheduling is a natural generalisation of Pinwheel Scheduling with respect to its optimisation variant, Bamboo Garden Trimming. Our work contributes the first nontrivial hardness-of-approximation reduction for any periodic scheduling problem, and opens up numerous avenues for further study of Polyamorous Scheduling.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
31+阅读 · 2020年9月21日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
17+阅读 · 2021年3月29日
Arxiv
31+阅读 · 2020年9月21日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员