The evaluation of the free energy of a stochastic model is considered a significant issue in various fields of physics and machine learning. However, the exact free energy evaluation is computationally infeasible because the free energy expression includes an intractable partition function. Annealed importance sampling (AIS) is a type of importance sampling based on the Markov chain Monte Carlo method that is similar to a simulated annealing and can effectively approximate the free energy. This study proposes an AIS-based approach, which is referred to as marginalized AIS (mAIS). The statistical efficiency of mAIS is investigated in detail based on theoretical and numerical perspectives. Based on the investigation, it is proved that mAIS is more effective than AIS under a certain condition.


翻译:在物理学和机器学习的各个领域,对随机模型的免费能源进行评估被认为是一个重要问题,然而,准确的免费能源评估在计算上是不可行的,因为自由能源表达包括一个难以解决的分割功能。根据Markov链的Monte Carlo方法,Annaal 重要取样是一种重要抽样类型,类似于模拟肛交,可以有效地接近免费能源。本研究报告提出了基于AIS的方法,称为边缘化的AIS(MAIS)。根据理论和数字角度对MAIS的统计效率进行详细调查。根据调查,可以证明在一定条件下,MAIS比AIS更有效。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员