Image matting refers to the estimation of the opacity of foreground objects. It requires correct contours and fine details of foreground objects for the matting results. To better accomplish human image matting tasks, we propose the Cascade Image Matting Network with Deformable Graph Refinement, which can automatically predict precise alpha mattes from single human images without any additional inputs. We adopt a network cascade architecture to perform matting from low-to-high resolution, which corresponds to coarse-to-fine optimization. We also introduce the Deformable Graph Refinement (DGR) module based on graph neural networks (GNNs) to overcome the limitations of convolutional neural networks (CNNs). The DGR module can effectively capture long-range relations and obtain more global and local information to help produce finer alpha mattes. We also reduce the computation complexity of the DGR module by dynamically predicting the neighbors and apply DGR module to higher--resolution features. Experimental results demonstrate the ability of our CasDGR to achieve state-of-the-art performance on synthetic datasets and produce good results on real human images.
翻译:图像交配是指对前景对象的不透明性的估计。 它需要正确的轮廓和前景对象的精细细节, 以取得交配结果。 为了更好地完成人类图像交配任务, 我们建议使用变形图形精度, 自动预测单人图像中精确的α藻类。 我们采用一个网络级联结构来从低分辨率到高分辨率进行交配, 与粗度到线性优化相对应。 我们还采用基于图形神经网络的变形图形精度( DGR)模块, 以克服进化神经网络( CNNs) 的局限性。 DGR 模块可以有效捕捉长距离关系, 获取更多全球和地方信息, 帮助生成更细的α藻类。 我们还通过动态预测邻居, 将DGR模块应用到更高分辨率特征来降低DGR模块的计算复杂性。 我们的CasDGR 实验结果表明, 我们的CasDGR有能力在合成数据集上实现最先进的性能, 并产生良好的人类真实图像结果 。