We give improved multi-pass streaming algorithms for the problem of maximizing a monotone or arbitrary non-negative submodular function subject to a general $p$-matchoid constraint in the model in which elements of the ground set arrive one at a time in a stream. The family of constraints we consider generalizes both the intersection of $p$ arbitrary matroid constraints and $p$-uniform hypergraph matching. For monotone submodular functions, our algorithm attains a guarantee of $p+1+\varepsilon$ using $O(p/\varepsilon)$-passes and requires storing only $O(k)$ elements, where $k$ is the maximum size of feasible solution. This immediately gives an $O(1/\varepsilon)$-pass $(2+\varepsilon)$-approximation algorithms for monotone submodular maximization in a matroid and $(3+\varepsilon)$-approximation for monotone submodular matching. Our algorithm is oblivious to the choice $\varepsilon$ and can be stopped after any number of passes, delivering the appropriate guarantee. We extend our techniques to obtain the first multi-pass streaming algorithm for general, non-negative submodular functions subject to a $p$-matchoid constraint with a number of passes independent of the size of the ground set and $k$. We show that a randomized $O(p/\varepsilon)$-pass algorithm storing $O(p^3k\log(k)/\varepsilon^3)$ elements gives a $(p+1+\bar{\gamma}+O(\varepsilon))$-approximation, where $\bar{gamma}$ is the guarantee of the best-known offline algorithm for the same problem.


翻译:对于单调子调制函数,我们给出改进的多通流算法,以最大限度地增加单调或任意的非负向子调制函数,但需在模型中以普通的美元=美元=matchoid 限制值为条件,在模型中,地面设定的元素在流中一次到达一个。我们考虑的制约组组合将美元=p$的任意类固醇限制和美元-单调高调匹配的交叉点都普遍化。对于单调子调制函数,我们的算法将保证美元+1 ⁇ varepsilon$(p/ varepsilon) 最大化,使用美元=o(p/ valepsilon) 美元=美元,并只需要存储美元=k$(k) 美元=match。我们的算法将美元=\\ varepsilal=lational=lational=mologal exmologal exprilation exmotion a proal sulacial sultal sution a proal sution a promotoal sulatial_

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年4月14日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员