Low-Rank Adaptation (LoRA) has become the de facto parameter-efficient fine-tuning (PEFT) method for large language models (LLMs) by constraining weight updates to low-rank matrices. Recent works such as Tied-LoRA, VeRA, and VB-LoRA push efficiency further by introducing additional constraints to reduce the trainable parameter space. In this paper, we show that the parameter space reduction strategies employed by these LoRA variants can be formulated within a unified framework, Uni-LoRA, where the LoRA parameter space, flattened as a high-dimensional vector space $R^D$, can be reconstructed through a projection from a subspace R^d, with $d \ll D$. We demonstrate that the fundamental difference among various LoRA methods lies in the choice of the projection matrix, $P \in R^{D \times d}$.Most existing LoRA variants rely on layer-wise or structure-specific projections that limit cross-layer parameter sharing, thereby compromising parameter efficiency. In light of this, we introduce an efficient and theoretically grounded projection matrix that is isometric, enabling global parameter sharing and reducing computation overhead. Furthermore, under the unified view of Uni-LoRA, this design requires only a single trainable vector to reconstruct LoRA parameters for the entire LLM - making Uni-LoRA both a unified framework and a "one-vector-only" solution. Extensive experiments on GLUE, mathematical reasoning, and instruction tuning benchmarks demonstrate that Uni-LoRA achieves state-of-the-art parameter efficiency while outperforming or matching prior approaches in predictive performance. Our code is available at https://github.com/KaiyangLi1992/Uni-LoRA.
翻译:低秩适应(LoRA)通过将权重更新约束于低秩矩阵,已成为大语言模型(LLM)参数高效微调(PEFT)的事实标准方法。近期研究如Tied-LoRA、VeRA和VB-LoRA通过引入额外约束进一步压缩可训练参数空间以提升效率。本文证明,这些LoRA变体采用的参数空间压缩策略可纳入统一框架Uni-LoRA进行表述:将LoRA参数空间展平为高维向量空间$R^D$后,可通过从子空间R^d(满足$d \ll D$)的投影重构。研究表明,不同LoRA方法的本质差异在于投影矩阵$P \in R^{D \times d}$的选择。现有多数LoRA变体依赖层间或结构特定的投影,限制了跨层参数共享,从而影响参数效率。鉴于此,我们提出一种高效且理论完备的等距投影矩阵设计,支持全局参数共享并降低计算开销。在Uni-LoRA的统一视角下,该设计仅需单个可训练向量即可重构整个LLM的LoRA参数——使Uni-LoRA同时成为统一框架与“单向量”解决方案。在GLUE基准、数学推理及指令微调任务上的大量实验表明,Uni-LoRA在实现最优参数效率的同时,其预测性能优于或匹配现有方法。代码已开源:https://github.com/KaiyangLi1992/Uni-LoRA。