Diagnosis of breast cancer malignancy at the early stages is a crucial step for controlling its side effects. Histopathological analysis provides a unique opportunity for malignant breast cancer detection. However, such a task would be tedious and time-consuming for the histopathologists. Deep Neural Networks enable us to learn informative features directly from raw histopathological images without manual feature extraction. Although Convolutional Neural Networks (CNNs) have been the dominant architectures in the computer vision realm, Transformer-based architectures have shown promising results in different computer vision tasks. Although harnessing the capability of Transformer-based architectures for medical image analysis seems interesting, these architectures are large, have a significant number of trainable parameters, and require large datasets to be trained on, which are usually rare in the medical domain. It has been claimed and empirically proved that at least part of the superior performance of Transformer-based architectures in Computer Vision domain originates from patch embedding operation. In this paper, we borrowed the previously introduced idea of integrating a fully Convolutional Neural Network architecture with Patch Embedding operation and presented an efficient CNN architecture for breast cancer malignancy detection from histopathological images. Despite the number of parameters that is significantly smaller than other methods, the accuracy performance metrics achieved 97.65%, 98.92%, 99.21%, and 98.01% for 40x, 100x, 200x, and 400x magnifications respectively. We took a step forward and modified the architecture using Group Convolution and Channel Shuffling ideas and reduced the number of trainable parameters even more with a negligible decline in performance and achieved 95.42%, 98.16%, 96.05%, and 97.92% accuracy for the mentioned magnifications respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员