Benefiting from the self-attention mechanism, Transformer models have attained impressive contextual comprehension capabilities for lengthy texts. The requirements of high-throughput inference arise as the large language models (LLMs) become increasingly prevalent, which calls for large-scale token parallel processing (LTPP). However, existing dynamic sparse accelerators struggle to effectively handle LTPP, as they solely focus on separate stage optimization, and with most efforts confined to computational enhancements. By re-examining the end-to-end flow of dynamic sparse acceleration, we pinpoint an ever-overlooked opportunity that the LTPP can exploit the intrinsic coordination among stages to avoid excessive memory access and redundant computation. Motivated by our observation, we present SOFA, a cross-stage compute-memory efficient algorithm-hardware co-design, which is tailored to tackle the challenges posed by LTPP of Transformer inference effectively. We first propose a novel leading zero computing paradigm, which predicts attention sparsity by using log-based add-only operations to avoid the significant overhead of prediction. Then, a distributed sorting and a sorted updating FlashAttention mechanism are proposed with a cross-stage coordinated tiling principle, which enables fine-grained and lightweight coordination among stages, helping optimize memory access and latency. Further, we propose a SOFA accelerator to support these optimizations efficiently. Extensive experiments on 20 benchmarks show that SOFA achieves $9.5\times$ speed up and $71.5\times$ higher energy efficiency than Nvidia A100 GPU. Compared to 8 SOTA accelerators, SOFA achieves an average $15.8\times$ energy efficiency, $10.3\times$ area efficiency and $9.3\times$ speed up, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2022年8月25日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员