Real-time simulation of elastic structures is essential in many applications, from computer-guided surgical interventions to interactive design in mechanical engineering. The Finite Element Method is often used as the numerical method of reference for solving the partial differential equations associated with these problems. Yet, deep learning methods have recently shown that they could represent an alternative strategy to solve physics-based problems 1,2,3. In this paper, we propose a solution to simulate hyper-elastic materials using a data-driven approach, where a neural network is trained to learn the non-linear relationship between boundary conditions and the resulting displacement field. We also introduce a method to guarantee the validity of the solution. In total, we present three contributions: an optimized data set generation algorithm based on modal analysis, a physics-informed loss function, and a Hybrid Newton-Raphson algorithm. The method is applied to two benchmarks: a cantilever beam and a propeller. The results show that our network architecture trained with a limited amount of data can predict the displacement field in less than a millisecond. The predictions on various geometries, topologies, mesh resolutions, and boundary conditions are accurate to a few micrometers for non-linear deformations of several centimeters of amplitude.


翻译:弹性结构的实时模拟在许多应用中至关重要,从计算机引导的外科手术干预到机械工程的交互式设计等许多应用中都是必要的。精密元素法经常被用作解决与这些问题有关的部分差异方程式的数值参考方法。然而,深层次的学习方法最近表明,它们可以作为解决物理问题的一种替代战略,1,2,3。在本文件中,我们提出了一个利用数据驱动方法模拟超弹性材料的解决方案,该方法培训神经网络以学习边界条件和由此产生的迁移场之间的非线性关系。我们还采用了一种保证解决方案有效性的方法。我们总共提出三项贡献:基于模型分析的优化数据集生成算法、物理学知情损失函数和牛顿-拉夫森混合算法。该方法适用于两个基准:罐头和螺旋推进器。结果显示,经过有限数据培训的网络结构可以在不到一毫秒的时间内预测迁移场。关于若干非地貌、表面分辨率、中间分辨率和边界状况的预测,精确到几厘米的微米。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
337+阅读 · 2020年1月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
Arxiv
0+阅读 · 2021年12月10日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员