We present a novel tensor interpolation algorithm for the time integration of nonlinear tensor differential equations (TDEs) on the tensor train and Tucker tensor low-rank manifolds, which are the building blocks of many tensor network decompositions. This paper builds upon our previous work (Donello et al., Proceedings of the Royal Society A, Vol. 479, 2023) on solving nonlinear matrix differential equations on low-rank matrix manifolds using CUR decompositions. The methodology we present offers multiple advantages: (i) It delivers near-optimal computational savings both in terms of memory and floating-point operations by leveraging cross algorithms based on the discrete empirical interpolation method to strategically sample sparse entries of the time-discrete TDEs to advance the solution in low-rank form. (ii) Numerical demonstrations show that the time integration is robust in the presence of small singular values. (iii) High-order explicit Runge-Kutta time integration schemes are developed. (iv) The algorithm is easy to implement, as it requires the evaluation of the full-order model at strategically selected entries and does not use tangent space projections, whose efficient implementation is intrusive. We demonstrate the efficiency of the presented algorithm for several test cases, including a nonlinear 100-dimensional TDE for the evolution of a tensor of size $70^{100} \approx 3.2 \times 10^{184}$ and a stochastic advection-diffusion-reaction equation with a tensor of size $4.7 \times 10^9$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员