SimRank is one of the most fundamental measures that evaluate the structural similarity between two nodes in a graph and has been applied in a plethora of data management tasks. These tasks often involve single-source SimRank computation that evaluates the SimRank values between a source node $s$ and all other nodes. Due to its high computation complexity, single-source SimRank computation for large graphs is notoriously challenging, and hence recent studies resort to distributed processing. To our surprise, although SimRank has been widely adopted for two decades, theoretical aspects of distributed SimRanks with provable results have rarely been studied. In this paper, we conduct a theoretical study on single-source SimRank computation in the Massive Parallel Computation (MPC) model, which is the standard theoretical framework modeling distributed systems such as MapReduce, Hadoop, or Spark. Existing distributed SimRank algorithms enforce either $\Omega(\log n)$ communication round complexity or $\Omega(n)$ machine space for a graph of $n$ nodes. We overcome this barrier. Particularly, given a graph of $n$ nodes, for any query node $v$ and constant error $\epsilon>\frac{3}{n}$, we show that using $O(\log^2 \log n)$ rounds of communication among machines is almost enough to compute single-source SimRank values with at most $\epsilon$ absolute errors, while each machine only needs a space sub-linear to $n$. To the best of our knowledge, this is the first single-source SimRank algorithm in MPC that can overcome the $\Theta(\log n)$ round complexity barrier with provable result accuracy.


翻译:注意事项:将Proper noun 用英文标记。

0
下载
关闭预览

相关内容

在Omega中,资源发放是乐观的(optimistic),每一个应用都发放了所有的可用的资源,冲突是在提交的时候被解决的。Omega的资源管理器,本质上是一个保存着每一个节点的状态关系数据库,并且用不同的乐观并发控制来解决冲突。这样的好处是其大大的提高了调度器的性能(完全的并行,full parallelism)和资源利用率。
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
量化金融强化学习论文集合
专知
14+阅读 · 2019年12月18日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员