The Internet of Things (IoT) bridges the gap between the physical and digital worlds, enabling seamless interaction with real-world objects via the Internet. However, IoT systems face significant challenges in ensuring efficient data generation, collection, and management, particularly due to the resource-constrained and unreliable nature of connected devices, which can lead to data loss. This paper presents DRACO (Data Replication and Collection), a framework that integrates a distributed hop-by-hop data replication approach with an overhead-free mobile sink-based data collection strategy. DRACO enhances data availability, optimizes replica placement, and ensures efficient data retrieval even under node failures and varying network densities. Extensive ns-3 simulations demonstrate that DRACO outperforms state-of-the-art techniques, improving data availability by up to 15% and 34%, and replica creation by up to 18% and 40%, compared to greedy and random replication techniques, respectively. DRACO also ensures efficient data dissemination through optimized replica distribution and achieves superior data collection efficiency under varying node densities and failure scenarios as compared to commonly used uncontrolled sink mobility approaches namely random walk and self-avoiding random walk. By addressing key IoT data management challenges, DRACO offers a scalable and resilient solution well-suited for emerging use cases.
翻译:物联网(IoT)弥合了物理世界与数字世界之间的鸿沟,使得通过互联网与现实世界对象进行无缝交互成为可能。然而,物联网系统在确保高效的数据生成、收集与管理方面面临重大挑战,这尤其归因于连接设备的资源受限性和不可靠性,可能导致数据丢失。本文提出了DRACO(数据复制与收集)框架,该框架将分布式逐跳数据复制方法与无开销的基于移动汇聚节点的数据收集策略相结合。DRACO增强了数据可用性,优化了副本放置,并确保即使在节点故障和变化的网络密度下也能实现高效的数据检索。大量的ns-3仿真实验表明,与贪婪复制和随机复制技术相比,DRACO分别将数据可用性提升了高达15%和34%,将副本创建效率提升了高达18%和40%。此外,通过优化的副本分发,DRACO确保了高效的数据传播,并且在变化的节点密度和故障场景下,相较于常用的无控制汇聚节点移动方法(即随机游走和自回避随机游走),实现了更优的数据收集效率。通过应对物联网数据管理的关键挑战,DRACO为新兴应用场景提供了一个可扩展且具有弹性的解决方案。