High-dimensional action spaces remain a challenge for dynamic algorithm configuration (DAC). Interdependencies and varying importance between action dimensions are further known key characteristics of DAC problems. We argue that these Coupled Action Dimensions with Importance Differences (CANDID) represent aspects of the DAC problem that are not yet fully explored. To address this gap, we introduce a new white-box benchmark within the DACBench suite that simulates the properties of CANDID. Further, we propose sequential policies as an effective strategy for managing these properties. Such policies factorize the action space and mitigate exponential growth by learning a policy per action dimension. At the same time, these policies accommodate the interdependence of action dimensions by fostering implicit coordination. We show this in an experimental study of value-based policies on our new benchmark. This study demonstrates that sequential policies significantly outperform independent learning of factorized policies in CANDID action spaces. In addition, they overcome the scalability limitations associated with learning a single policy across all action dimensions. The code used for our experiments is available under https://github.com/PhilippBordne/candidDAC.


翻译:暂无翻译

0
下载
关闭预览

相关内容

DAC:Design Automation Conference。 Explanation:设计自动化会议。 Publisher:ACM。 SIT: https://dblp.uni-trier.de/db/conf/dac/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Transformers in Remote Sensing: A Survey
Arxiv
25+阅读 · 2022年9月2日
Anomalous Instance Detection in Deep Learning: A Survey
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员