We consider class incremental learning (CIL) problem, in which a learning agent continuously learns new classes from incrementally arriving training data batches and aims to predict well on all the classes learned so far. The main challenge of the problem is the catastrophic forgetting, and for the exemplar-memory based CIL methods, it is generally known that the forgetting is commonly caused by the prediction score bias that is injected due to the data imbalance between the new classes and the old classes (in the exemplar-memory). While several methods have been proposed to correct such score bias by some additional post-processing, e.g., score re-scaling or balanced fine-tuning, no systematic analysis on the root cause of such bias has been done. To that end, we analyze that computing the softmax probabilities by combining the output scores for all old and new classes could be the main source of the bias and propose a new CIL method, Separated Softmax for Incremental Learning (SS-IL). Our SS-IL consists of separated softmax (SS) output layer and ratio-preserving (RP) mini-batches combined with task-wise knowledge distillation (TKD), and through extensive experimental results, we show our SS-IL achieves very strong state-of-the-art accuracy on several large-scale benchmarks. We also show SS-IL makes much more balanced prediction, without any additional post-processing steps as is done in other baselines.


翻译:我们认为课堂递增学习(CIL)问题,其中学习机构不断从逐步到来的培训数据批量中学习新班级,目的是对迄今所学的所有班级进行良好的预测。问题的主要挑战是灾难性的遗忘,对于基于模拟-模拟的CIL方法,众所周知,由于新班级和旧班级之间数据不平衡而注入的预测分数偏差通常造成这种忘却(在模拟阶段)问题。虽然已经提出若干方法,通过一些额外的后处理纠正这种分数偏差,例如,重新评分或平衡的微调,但还没有对这种偏差的根源进行系统分析。为此,我们分析,通过将所有旧班和新班的输出分数合并计算软负概率,可能是偏差的主要来源,并提出新的CIL方法,即为增级学习(SS-IL)分离的Sftmax。我们的SS-IL由分离的软压输出层和比重的微调调整(RP)等高的后程(MISLA),通过不长的实验级综合结果显示我们一系列的大规模预测结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
203+阅读 · 2020年1月13日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
6+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
7+阅读 · 2018年12月6日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
Arxiv
11+阅读 · 2018年1月18日
Top
微信扫码咨询专知VIP会员