In this work we propose a weighted hybridizable discontinuous Galerkin method (W-HDG) for drift-diffusion problems. By using specific exponential weights when computing the $L^2$ product in each cell of the discretization, we are able to replicate the behavior of the Slotboom change of variables, and eliminate the drift term from the local matrix contributions. We show that the proposed numerical scheme is well-posed, and numerically validates that it has the same properties of classical HDG methods, including optimal convergence, and superconvergence of postprocessed solutions. For polynomial degree zero, dimension one, and vanishing HDG stabilization parameter, W-HDG coincides with the Scharfetter-Gummel stabilized finite volume scheme (i.e., it produces the same system matrix). The use of local exponential weights generalizes the Scharfetter-Gummel stabilization (the state-of-the-art for Finite Volume discretization of transport-dominated problems) to arbitrary high-order approximations.
翻译:在这项工作中,我们为漂流扩散问题提出了一个可加权混合不连续加列金方法(W-HDG) 。 通过在离散的每个单元格中计算$L2$产品时使用特定的指数重量,我们能够复制变数的Slotboom变化行为,并消除本地矩阵贡献中的漂移值。我们表明,拟议的数字方法有很好的储备,并且从数字上证实,它具有传统的HDG方法的相同特性,包括最佳趋同和后处理解决方案的超级趋同。对于多元度0, 尺寸1, 和消失的HDG稳定参数, W-HDG与Scharfetter-Gummel稳定的定量计划(即它产生相同的系统矩阵)相吻合。 使用本地指数重量将Scharfeter-Gummel稳定化(运输中以精度为主的问题的精度分解化的状态)一般化为任意的高阶近。