Solving inverse problems is central to a variety of important applications, such as biomedical image reconstruction and non-destructive testing. These problems are characterized by the sensitivity of direct solution methods with respect to data perturbations. To stabilize the reconstruction process, regularization methods have to be employed. Well-known regularization methods are based on frame expansions, such as the wavelet-vaguelette (WVD) decomposition, which are well adapted to the underlying signal class and the forward model and furthermore allow efficient implementation. However, it is well known that the lack of translational invariance of wavelets and related systems leads to specific artifacts in the reconstruction. To overcome this problem, in this paper we introduce and analyze the translation invariant diagonal frame decomposition (TI-DFD) of linear operators as a novel concept generalizing the SVD. We characterize ill-posedness via the TI-DFD and prove that a TI-DFD combined with a regularizing filter leads to a convergent regularization method with optimal convergence rates. As illustrative example, we construct a wavelet-based TI-DFD for one-dimensional integration, where we also investigate our approach numerically. The results indicate that filtered TI-DFDs eliminate the typical wavelet artifacts when using standard wavelets and provide a fast, accurate, and stable solution scheme for inverse problems.


翻译:解决反面问题对于生物医学图像重建和非破坏性测试等各种重要应用至关重要。这些问题的特点是对数据扰动直接解决方案方法的敏感性。为了稳定重建进程,必须采用正规化方法。众所周知的正规化方法基于框架扩展,如波盘-蒸发器(WVD)分解,这些扩展非常适合基本信号级和前方模型,而且能够更有效地实施。然而,众所周知,缺乏翻译变异的波子和相关系统导致重建中的具体文物。为了解决这一问题,我们在本文件中介绍和分析线性操作员的变异对数框架分解(TI-DFD),将其作为一个新概念,概括了SVD(T-DVD)的变形。我们通过TI-DFD(W)的分解方式将错误定性为错误,并且证明,TI-DD与常规化的过滤器一起导致以最佳汇合率的趋同法方法。作为例证,我们用基于波盘的TIDDD(TI-DD)的转化方法来克服这个问题。我们用一个典型的数字化、数字化的集式方法来说明我们如何用一个稳定化的方法来消除了。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年5月6日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员