Vertical Federated Learning (VFL) offers a privacy-preserving paradigm for Edge AI scenarios like mobile health diagnostics, where sensitive multimodal data reside on distributed, resource-constrained devices. Yet, standard VFL systems often suffer performance limitations due to simplistic feature fusion. This paper introduces HybridVFL, a novel framework designed to overcome this bottleneck by employing client-side feature disentanglement paired with a server-side cross-modal transformer for context-aware fusion. Through systematic evaluation on the multimodal HAM10000 skin lesion dataset, we demonstrate that HybridVFL significantly outperforms standard federated baselines, validating the criticality of advanced fusion mechanisms in robust, privacy-preserving systems.
翻译:垂直联邦学习(VFL)为移动健康诊断等边缘人工智能场景提供了一种隐私保护的范式,其中敏感的多模态数据分布在资源受限的分布式设备上。然而,由于特征融合方式过于简化,标准VFL系统常面临性能限制。本文提出HybridVFL,一种新颖的框架,旨在通过客户端特征解耦与服务器端跨模态Transformer相结合,实现上下文感知融合,从而突破这一瓶颈。通过对多模态皮肤病变数据集HAM10000进行系统评估,我们证明HybridVFL显著优于标准联邦学习基线,验证了先进融合机制在鲁棒、隐私保护系统中的关键作用。