In industry NLP application, our manually labeled data has a certain number of noisy data. We present a simple method to find the noisy data and relabel them manually, meanwhile we collect the correction information. Then we present novel method to incorporate the human correction information into deep learning model. Human know how to correct noisy data. So the correction information can be inject into deep learning model. We do the experiment on our own text classification dataset, which is manually labeled, because we relabel the noisy data in our dataset for our industry application. The experiment result shows that our method improve the classification accuracy from 91.7% to 92.5%. The 91.7% baseline is based on BERT training on the corrected dataset, which is hard to surpass.


翻译:在工业NLP应用程序中,我们手工标签的数据含有一定数量的噪音数据。我们提出了一个简单的方法来查找噪音数据并手工重新标签,同时我们收集更正信息。然后我们将新的方法将人类校正信息纳入深层学习模式。人类知道如何校正噪音数据。因此,校正信息可以输入深层学习模式。我们用人工标签在自己的文本分类数据集上做实验,因为我们将噪音数据重新贴在我们的行业应用程序的数据集中。实验结果显示,我们的方法提高了分类准确性,从91.7%提高到92.5%。91.7%的基线是基于对校正数据集的BERT培训,这很难超过。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
92+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Top
微信扫码咨询专知VIP会员