We introduce Autoverse, an evolvable, domain-specific language for single-player 2D grid-based games, and demonstrate its use as a scalable training ground for Open-Ended Learning (OEL) algorithms. Autoverse uses cellular-automaton-like rewrite rules to describe game mechanics, allowing it to express various game environments (e.g. mazes, dungeons, sokoban puzzles) that are popular testbeds for Reinforcement Learning (RL) agents. Each rewrite rule can be expressed as a series of simple convolutions, allowing for environments to be parallelized on the GPU, thereby drastically accelerating RL training. Using Autoverse, we propose jump-starting open-ended learning by imitation learning from search. In such an approach, we first evolve Autoverse environments (their rules and initial map topology) to maximize the number of iterations required by greedy tree search to discover a new best solution, producing a curriculum of increasingly complex environments and playtraces. We then distill these expert playtraces into a neural-network-based policy using imitation learning. Finally, we use the learned policy as a starting point for open-ended RL, where new training environments are continually evolved to maximize the RL player agent's value function error (a proxy for its regret, or the learnability of generated environments), finding that this approach improves the performance and generality of resultant player agents.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员