The demands for higher performance and accuracy in neural networks (NNs) never end. Existing tensor compilation and Neural Architecture Search (NAS) techniques orthogonally optimize the two goals but actually share many similarities in their concrete strategies. We exploit such opportunities by combining the two into one and make a case for Kernel Architecture Search (KAS). KAS reviews NAS from a system perspective and zooms into a more fine-grained level to generate neural kernels with both high performance and good accuracy. To demonstrate the potential of KAS, we build an end-to-end framework, Canvas, to find high-quality kernels as convolution replacements. Canvas samples from a rich set of fine-grained primitives to stochastically and iteratively construct new kernels and evaluate them according to user-specified constraints. Canvas supports freely adjustable tensor dimension sizes inside the kernel and uses two levels of solvers to satisfy structural legality and fully utilize model budgets. The evaluation shows that by replacing standard convolutions with generated new kernels in common NNs, Canvas achieves average 1.5x speedups compared to the previous state-of-the-art with acceptable accuracy loss and search efficiency. Canvas verifies the practicability of KAS by rediscovering many manually designed kernels in the past and producing new structures that may inspire future machine learning innovations.


翻译:对神经网络(NN)高性能和高准确性的需求从未停止。现有的张量编译和神经架构搜索技术正交地优化了两个目标,但实际上在它们的具体策略上存在许多相似之处。我们通过将两者合并为一个,为内核架构搜索(KAS)打造案例。KAS从系统层面审查NAS,并向更精细的层面缩放,生成既具有高性能又具有良好准确性的神经内核。为展示KAS的潜力,我们构建了一个端到端框架——Canvas,用于查找替换卷积的高质量内核。Canvas从丰富的微观原语中抽样,随机地和迭代地构造新内核,并根据用户指定的约束条件进行评估。Canvas支持内核内的自由可调整张量维度大小,并使用两个级别的求解器来满足结构合法性和充分利用模型预算。评估结果显示,通过在常见的NN中用生成的新内核替换标准卷积,Canvas相对于先前的最新技术实现了1.5倍的平均加速比,且具有可以接受的准确性损失和搜索效率。Canvas通过重新发现过去许多手动设计的内核并产生可能启发未来机器学习创新的新结构,验证了KAS的实用性。

0
下载
关闭预览

相关内容

Canvas 是 HTML5 标准中新晋的标签元素,它还提供了基于 JavaScript 的 2D 和 bitmap 图形的 API。
专知会员服务
59+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
59+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员