We study algorithms for approximating the spectral density of a symmetric matrix $A$ that is accessed through matrix-vector product queries. By combining a previously studied Chebyshev polynomial moment matching method with a deflation step that approximately projects off the largest magnitude eigendirections of $A$ before estimating the spectral density, we give an $\epsilon\cdot\sigma_\ell(A)$ error approximation to the spectral density in the Wasserstein-$1$ metric using $O(\ell\log n+ 1/\epsilon)$ matrix-vector products, where $\sigma_\ell(A)$ is the $\ell^{th}$ largest singular value of $A$. In the common case when $A$ exhibits fast singular value decay, our bound can be much stronger than prior work, which gives an error bound of $\epsilon \cdot ||A||_2$ using $O(1/\epsilon)$ matrix-vector products. We also show that it is nearly tight: any algorithm giving error $\epsilon \cdot \sigma_\ell(A)$ must use $\Omega(\ell+1/\epsilon)$ matrix-vector products. We further show that the popular Stochastic Lanczos Quadrature (SLQ) method matches the above bound, even though SLQ itself is parameter-free and performs no explicit deflation. This bound explains the strong practical performance of SLQ, and motivates a simple variant of SLQ that achieves an even tighter error bound. Our error bound for SLQ leverages an analysis that views it as an implicit polynomial moment matching method, along with recent results on low-rank approximation with single-vector Krylov methods. We use these results to show that the method can perform implicit deflation as part of moment matching.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
Arxiv
31+阅读 · 2021年6月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2024年5月28日
Arxiv
31+阅读 · 2021年6月30日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员