We consider statistical inference in the density estimation model using a tree-based Bayesian approach, with Optional P\'olya trees as prior distribution. We derive near-optimal convergence rates for corresponding posterior distributions with respect to the supremum norm. For broad classes of H\"older-smooth densities, we show that the method automatically adapts to the unknown H\"older regularity parameter. We consider the question of uncertainty quantification by providing mathematical guarantees for credible sets from the obtained posterior distributions, leading to near-optimal uncertainty quantification for the density function, as well as related functionals such as the cumulative distribution function. The results are illustrated through a brief simulation study.
翻译:我们用基于树的Bayesian 方法来考虑密度估计模型中的统计推论,以P\'olya 树作为先前的分布方式。 我们得出与超模规范相对应的后部分布的接近最佳的趋同率。 对于大类H\'older-smooth 密度,我们显示该方法自动适应未知的H\'older常规参数。 我们考虑不确定性的量化问题,为从获得的后部分布中获取的可靠数据集提供数学保证,导致密度函数的近最佳不确定性量化,以及累积分布函数等相关功能。结果通过一个简短的模拟研究加以说明。