Temporal Knowledge Graphs store events in the form of subjects, relations, objects, and timestamps which are often represented by dynamic heterogeneous graphs. Event forecasting is a critical and challenging task in Temporal Knowledge Graph reasoning that predicts the subject or object of an event in the future. To obtain temporal embeddings multi-step away in the future, existing methods learn generative models that capture the joint distribution of the observed events. To reduce the high computation costs, these methods rely on unrealistic assumptions of independence and approximations in training and inference. In this work, we propose SeDyT, a discriminative framework that performs sequence modeling on the dynamic entity embeddings to solve the multi-step event forecasting problem. SeDyT consists of two components: a Temporal Graph Neural Network that generates dynamic entity embeddings in the past and a sequence model that predicts the entity embeddings in the future. Compared with the generative models, SeDyT does not rely on any heuristic-based probability model and has low computation complexity in both training and inference. SeDyT is compatible with most Temporal Graph Neural Networks and sequence models. We also design an efficient training method that trains the two components in one gradient descent propagation. We evaluate the performance of SeDyT on five popular datasets. By combining temporal Graph Neural Network models and sequence models, SeDyT achieves an average of 2.4% MRR improvement when not using the validation set and more than 10% MRR improvement when using the validation set.


翻译:时间知识图将事件以主题、关系、对象和时间戳的形式存储,通常以动态变异图形为代表。 事件预报是Temporal知识图推理中一项关键和具有挑战性的任务,预测未来某一事件的主题或对象。 要在未来获得时间嵌入, 现有方法可以学习包含所观测事件联合分布的基因模型。 为了降低高计算成本, 这些方法依靠不切实际的独立假设以及培训和推断中近似值。 在这项工作中, 我们提议SeDyT, 是一个对动态实体嵌入嵌入模型以解决多步骤事件预测问题的歧视性框架。 SeDyT由两个组成部分组成: 一个将动态实体嵌入过去多步的Temoral图内线网络, 以及一个预测实体嵌入未来的序列模型。 与基因模型相比, SeDyT并不依赖任何基于超常概率的概率模型, 而且在培训和推断中, 计算的复杂性也较低。 SeDyT与大多数动态实体嵌入的序列网络不兼容, 使用最高级的Semoralalimal Instrual destrual comstration AS a 10 mande mande mantual deal stration mandestrutal comm manus mande laction manuction manus manus laction 和两个模型, 在使用一个智能模型中, 也使用一个智能模型, 在测试中, 在使用一个智能模型中, 10 westrutututututututus a 和一个稳定的模型, 在使用一个测试中, 10 wegrestrutrigregrestrutrigregregregrestration 和一个稳定的模型中, 10 wequcrestr drestr 10 weregregregregregregreal tract setal 10 这样的模型中, 在使用一个系统化模型中, 在使用一种方法在使用一种方法进行一种方法进行一个稳定的模型, 这样的模型的模型, 方法进行一种方法进行一个稳定的模型的模型的模型的模型, 10 和结构化模型的模型, 这样的模型, 这样的模型, 这样的模型的模型, 。

0
下载
关闭预览

相关内容

知识增强的文本生成研究进展
专知会员服务
100+阅读 · 2021年3月6日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
Seq2seq框架下的文本生成
DataFunTalk
3+阅读 · 2020年8月3日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月10日
Using Scene Graph Context to Improve Image Generation
VIP会员
相关资讯
Seq2seq框架下的文本生成
DataFunTalk
3+阅读 · 2020年8月3日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员