Driving requires interacting with road agents and predicting their future behaviour in order to navigate safely. We present FIERY: a probabilistic future prediction model in bird's-eye view from monocular cameras. Our model predicts future instance segmentation and motion of dynamic agents that can be transformed into non-parametric future trajectories. Our approach combines the perception, sensor fusion and prediction components of a traditional autonomous driving stack by estimating bird's-eye-view prediction directly from surround RGB monocular camera inputs. FIERY learns to model the inherent stochastic nature of the future directly from camera driving data in an end-to-end manner, without relying on HD maps, and predicts multimodal future trajectories. We show that our model outperforms previous prediction baselines on the NuScenes and Lyft datasets. Code is available at https://github.com/wayveai/fiery
翻译:驾驶需要与道路物剂进行互动,并预测其未来行为,以便安全导航。我们介绍了FIORY:从单眼相机中以鸟眼观观观的鸟类未来概率预测模型。我们的模型预测了能转换成非参数未来轨迹的动态物剂未来例分解和运动。我们的方法将传统自主驾驶堆的感知、感知聚合和预测部分结合起来,方法是通过在RGB单眼摄影机投入周围直接估计鸟的眼视预测。FIORY学习了从镜头驱动数据中直接从最终到最终的摄影机数据中模拟未来固有的随机性质,而不依赖HD地图,并预测了多式联运的未来轨迹。我们展示了我们的模型比Nuscenes和Lyft数据集以前的预测基线要强。代码可在https://github.com/wayveai/fiery查阅https://github.com/wayveai/fery上查阅。