Mix-up is a key technique for consistency regularization-based semi-supervised learning methods, generating strong-perturbed samples for strong-weak pseudo-supervision. Existing mix-up operations are performed either randomly or with predefined rules, such as replacing low-confidence patches with high-confidence ones. The former lacks control over the perturbation degree, leading to overfitting on randomly perturbed samples, while the latter tends to generate images with trivial perturbations, both of which limit the effectiveness of consistency learning. This paper aims to answer the following question: How can image mix-up perturbation be adaptively performed during training? To this end, we propose an Adaptive Mix algorithm (AdaMix) for image mix-up in a self-paced learning manner. Given that, in general, a model's performance gradually improves during training, AdaMix is equipped with a self-paced curriculum that, in the initial training stage, provides relatively simple perturbed samples and then gradually increases the difficulty of perturbed images by adaptively controlling the perturbation degree based on the model's learning state estimated by a self-paced regularize. We develop three frameworks with our AdaMix, i.e., AdaMix-ST, AdaMix-MT, and AdaMix-CT, for semi-supervised medical image segmentation. Extensive experiments on three public datasets, including both 2D and 3D modalities, show that the proposed frameworks are capable of achieving superior performance. For example, compared with the state-of-the-art, AdaMix-CT achieves relative improvements of 2.62% in Dice and 48.25% in average surface distance on the ACDC dataset with 10% labeled data. The results demonstrate that mix-up operations with dynamically adjusted perturbation strength based on the segmentation model's state can significantly enhance the effectiveness of consistency regularization.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员