Lower bounds against strong algebraic proof systems and specifically fragments of the Ideal Proof System (IPS), have been obtained in an ongoing line of work. All of these bounds, however, are proved only over large (or characteristic $0$) fields, yet finite fields are the more natural setting for propositional proof complexity, especially for progress toward lower bounds for Frege systems such as $AC^0[p]$-Frege. This work establishes lower bounds against fragments of IPS over fixed finite fields. Specifically, we show that a variant of the knapsack instance studied by Govindasamy, Hakoniemi, and Tzameret (FOCS'22) has no polynomial-size IPS refutation over finite fields when the refutation is multilinear and written as a constant-depth circuit. The key ingredient of our argument is the recent set-multilinearization result of Forbes (CCC'24), which extends the earlier result of Limaye, Srinivasan, and Tavenas (FOCS'21) to all fields, and an extension of the techniques of Govindasamy, Hakoniemi, and Tzameret to finite fields. We also separate this proof system from the one studied by Govindasamy, Hakoniemi, and Tzameret. In addition, we present new lower bounds for read-once algebraic branching program refutations, roABP-IPS, in finite fields, extending results of Forbes, Shpilka, Tzameret, and Wigderson (Theor. of Comput.'21) and Hakoniemi, Limaye, and Tzameret (STOC'24). Finally, we show that any lower bound against any proof system at least as strong as (non-multilinear) constant-depth IPS over finite fields for any instance, even a purely algebraic instance (i.e., not a translation of a Boolean formula or CNF), implies a hard CNF formula for the respective IPS fragment, and hence an $AC^0[p]$-Frege lower bound by known simulations over finite fields (Grochow and Pitassi (J. ACM'18)).
翻译:针对强代数证明系统,特别是理想证明系统(IPS)的片段,已有持续的研究工作获得了下界结果。然而,所有这些下界都仅在大型域(或特征为$0$的域)上得到证明,而有限域才是命题证明复杂性更自然的设定,尤其是对于推进诸如$AC^0[p]$-Frege等弗雷格系统下界的研究。本工作建立了在固定有限域上针对IPS片段的下界。具体而言,我们证明了Govindasamy、Hakoniemi和Tzameret(FOCS'22)所研究的背包实例的一个变体,在有限域上不存在多项式大小的IPS反驳,当该反驳是多重线性的且写为常数深度电路时。我们论证的关键要素是Forbes(CCC'24)最近提出的集合多重线性化结果,该结果将Limaye、Srinivasan和Tavenas(FOCS'21)的早期结果推广至所有域,以及将Govindasamy、Hakoniemi和Tzameret的技术推广至有限域。我们还将此证明系统与Govindasamy、Hakoniemi和Tzameret研究的系统分离开来。此外,我们针对有限域中的单次读取代数分支程序反驳(roABP-IPS)提出了新的下界,扩展了Forbes、Shpilka、Tzameret和Wigderson(Theor. of Comput.'21)以及Hakoniemi、Limaye和Tzameret(STOC'24)的结果。最后,我们证明了,对于任何实例(即使是一个纯代数实例,即不是布尔公式或CNF的翻译),针对有限域上至少与(非多重线性)常数深度IPS一样强的任何证明系统的任何下界,都意味着存在一个对于相应IPS片段而言困难的CNF公式,从而通过有限域上已知的模拟(Grochow和Pitassi(J. ACM'18))可以得出一个$AC^0[p]$-Frege下界。