Deep learning-based vulnerability detection models have recently been shown to be effective and, in some cases, outperform static analysis tools. However, the highest-performing approaches use token-based transformer models, which do not leverage domain knowledge. Classical program analysis techniques such as dataflow analysis can detect many types of bugs and are the most commonly used methods in practice. Motivated by the causal relationship between bugs and dataflow analysis, we present DeepDFA, a dataflow analysis-guided graph learning framework and embedding that uses program semantic features for vulnerability detection. We show that DeepDFA is performant and efficient. DeepDFA ranked first in recall, first in generalizing over unseen projects, and second in F1 among all the state-of-the-art models we experimented with. It is also the smallest model in terms of the number of parameters, and was trained in 9 minutes, 69x faster than the highest-performing baseline. DeepDFA can be used with other models. By integrating LineVul and DeepDFA, we achieved the best vulnerability detection performance of 96.4 F1 score, 98.69 precision, and 94.22 recall.


翻译:最近已经证明,基于深层次学习的脆弱性检测模型是有效的,在某些情况下,超过了静态分析工具。然而,绩效最高的方法使用基于象征性的变压器模型,这些模型不能利用域知识。典型的方案分析技术,如数据流分析,可以检测许多类型的错误,也是实践中最常用的方法。受错误和数据流分析之间因果关系的驱动,我们介绍了DeepDFA,一个数据流分析指导图表学习框架,并嵌入了使用程序语义特征来检测脆弱性的嵌入。我们发现,DeepDFA是表现和高效的。DFA在回顾中名列第一,首先是对未见项目进行概括化,在F1中排名第二。它也是我们所试验的所有最先进的模型,在参数数量方面也是最小的模型,在9分钟内培训,比最高基准速度快69x。DeepDFA可以与其他模型一起使用。通过整合LEVul和DeepDFA,我们取得了96.4 F1评分、98.69精确度和94.22回顾的最佳脆弱性检测性。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员